Return all DVID body annotations
Usage
mcns_dvid_annotations(
ids = NULL,
node = "neutu",
rval = c("data.frame", "list"),
columns_show = NULL,
cache = FALSE,
...
)
Arguments
- ids
A set of body ids in any form understandable to
manc_ids
- node
A DVID node as returned by
manc_dvid_node
. The default is to return the current active (unlocked) node being used through neutu.- rval
Whether to return a fully parsed data.frame (the default) or an R list. The data.frame is easier to work with but typically includes NAs for many values that would be missing in the list.
- columns_show
Whether to show all columns, or just with '_user', or '_time' suffix. Accepted options are: 'user', 'time', 'all'.
- cache
Whether to cache the result of this call for 5 minutes.
- ...
Additional arguments passed to
pbapply::pblapply
Value
A tibble
containing with columns including
bodyid as a
numeric
valuestatus
user
naming_user
instance
status_user
comment
NB only one bodyid
is used regardless of whether the key-value
returned has 0, 1 or 2 bodyid fields. When the ids
are specified,
missing ids will have a row containing the bodyid
in question and
then all other columns will be NA
.
Details
See this Slack post from Stuart Berg for details.
Note that the original api call was <rootuuid>:master
, but I have
now just changed this to <neutu-uuid>
as returned by
manc_dvid_node
. This was because the range query stopped
working 16 May 2021, probably because of a bad node.
See also
Other annotations:
mcns_body_annotations()
,
mcns_neuprint_meta()
,
mcns_soma_side()
Examples
# \donttest{
mda=mcns_dvid_annotations()
head(mda)
#> # A tibble: 6 × 41
#> bodyid birthtime celltype_predicted_nt celltype_predicted_nt_confidence
#> <dbl> <chr> <chr> <dbl>
#> 1 10001 early acetylcholine 0.528
#> 2 10002 NA acetylcholine 0.956
#> 3 10003 early gaba 0.875
#> 4 10005 early gaba 0.831
#> 5 10006 NA acetylcholine 0.820
#> 6 10009 NA gaba 0.866
#> # ℹ 37 more variables: celltype_total_nt_predictions <int>, consensus_nt <chr>,
#> # flywire_type <chr>, group <int>, hemibrain_type <chr>, instance <chr>,
#> # itolee_hl <chr>, manc_bodyid <dbl>, manc_group <int>, manc_type <chr>,
#> # predicted_nt <chr>, predicted_nt_confidence <dbl>, soma_side <chr>,
#> # status <chr>, subclass <chr>, superclass <chr>, synonyms <chr>,
#> # total_nt_predictions <int>, type <chr>, supertype <chr>, class <chr>,
#> # fru_dsx <chr>, dimorphism <chr>, soma_neuromere <chr>, truman_hl <chr>, …
plot(table(mda$type), ylab='Frequency')
kcs=mcns_dvid_annotations("/KC.*")
mbons=mcns_dvid_annotations("/MBON.+")
head(mbons)
#> # A tibble: 6 × 41
#> bodyid birthtime celltype_predicted_nt celltype_predicted_nt_confidence
#> <dbl> <chr> <chr> <dbl>
#> 1 520151 early glutamate 0.714
#> 2 10013 early glutamate 0.714
#> 3 522444 early glutamate 0.742
#> 4 522749 early glutamate 0.742
#> 5 519373 early glutamate 0.768
#> 6 521526 early glutamate 0.768
#> # ℹ 37 more variables: celltype_total_nt_predictions <int>, consensus_nt <chr>,
#> # flywire_type <chr>, group <int>, hemibrain_type <chr>, instance <chr>,
#> # itolee_hl <chr>, manc_bodyid <dbl>, manc_group <int>, manc_type <chr>,
#> # predicted_nt <chr>, predicted_nt_confidence <dbl>, soma_side <chr>,
#> # status <chr>, subclass <chr>, superclass <chr>, synonyms <chr>,
#> # total_nt_predictions <int>, type <chr>, supertype <chr>, class <chr>,
#> # fru_dsx <chr>, dimorphism <chr>, soma_neuromere <chr>, truman_hl <chr>, …
# }