Return all DVID body annotations
Usage
mcns_dvid_annotations(
ids = NULL,
node = "neutu",
rval = c("data.frame", "list"),
columns_show = NULL,
cache = FALSE,
...
)Arguments
- ids
A set of body ids in any form understandable to
manc_ids- node
A DVID node as returned by
manc_dvid_node. The default is to return the current active (unlocked) node being used through neutu.- rval
Whether to return a fully parsed data.frame (the default) or an R list. The data.frame is easier to work with but typically includes NAs for many values that would be missing in the list.
- columns_show
Whether to show all columns, or just with '_user', or '_time' suffix. Accepted options are: 'user', 'time', 'all'.
- cache
Whether to cache the result of this call for 5 minutes.
- ...
Additional arguments passed to
pbapply::pblapply
Value
A tibble containing with columns including
bodyid as a
numericvaluestatus
user
naming_user
instance
status_user
comment
NB only one bodyid is used regardless of whether the key-value
returned has 0, 1 or 2 bodyid fields. When the ids are specified,
missing ids will have a row containing the bodyid in question and
then all other columns will be NA.
Details
See this Slack post from Stuart Berg for details.
Note that the original api call was <rootuuid>:master, but I have
now just changed this to <neutu-uuid> as returned by
manc_dvid_node. This was because the range query stopped
working 16 May 2021, probably because of a bad node.
See also
Other annotations:
mcns_body_annotations(),
mcns_neuprint_meta(),
mcns_soma_side()
Examples
# \donttest{
mda=mcns_dvid_annotations()
head(mda)
#> # A tibble: 6 × 41
#> bodyid birthtime celltype_predicted_nt celltype_predicted_nt_confidence
#> <dbl> <chr> <chr> <dbl>
#> 1 10001 early acetylcholine 0.528
#> 2 10002 NA acetylcholine 0.956
#> 3 10003 early gaba 0.875
#> 4 10005 early gaba 0.831
#> 5 10006 NA acetylcholine 0.820
#> 6 10009 NA gaba 0.866
#> # ℹ 37 more variables: celltype_total_nt_predictions <int>, consensus_nt <chr>,
#> # flywire_type <chr>, group <int>, hemibrain_type <chr>, instance <chr>,
#> # itolee_hl <chr>, manc_bodyid <dbl>, manc_group <int>, manc_type <chr>,
#> # predicted_nt <chr>, predicted_nt_confidence <dbl>, soma_side <chr>,
#> # status <chr>, subclass <chr>, superclass <chr>, synonyms <chr>,
#> # total_nt_predictions <int>, type <chr>, supertype <chr>, class <chr>,
#> # fru_dsx <chr>, dimorphism <chr>, soma_neuromere <chr>, truman_hl <chr>, …
plot(table(mda$type), ylab='Frequency')
kcs=mcns_dvid_annotations("/KC.*")
mbons=mcns_dvid_annotations("/MBON.+")
head(mbons)
#> # A tibble: 6 × 41
#> bodyid birthtime celltype_predicted_nt celltype_predicted_nt_confidence
#> <dbl> <chr> <chr> <dbl>
#> 1 520151 early glutamate 0.714
#> 2 10013 early glutamate 0.714
#> 3 522444 early glutamate 0.742
#> 4 522749 early glutamate 0.742
#> 5 519373 early glutamate 0.768
#> 6 521526 early glutamate 0.768
#> # ℹ 37 more variables: celltype_total_nt_predictions <int>, consensus_nt <chr>,
#> # flywire_type <chr>, group <int>, hemibrain_type <chr>, instance <chr>,
#> # itolee_hl <chr>, manc_bodyid <dbl>, manc_group <int>, manc_type <chr>,
#> # predicted_nt <chr>, predicted_nt_confidence <dbl>, soma_side <chr>,
#> # status <chr>, subclass <chr>, superclass <chr>, synonyms <chr>,
#> # total_nt_predictions <int>, type <chr>, supertype <chr>, class <chr>,
#> # fru_dsx <chr>, dimorphism <chr>, soma_neuromere <chr>, truman_hl <chr>, …
# }