prune an object by removing points near (or far) from a target object
prune(x, target, ...)
# S3 method for neuron
prune(x, target, ...)
# S3 method for dotprops
prune(x, target, ...)
# S3 method for neuronlist
prune(x, target, ...)
# S3 method for default
prune(x, target, maxdist, keep = c("near", "far"), return.indices = FALSE, ...)
The object to prune. (e.g. dotprops
object, see details)
Another object with 3D points that will determine which points in x are kept.
Additional arguments for methods (eventually passed to
prune.default
)
The threshold distance for keeping points
Whether to keep points in x that are near or far from the target
Whether to return the indices that pass the test rather
than the 3D object/points (default FALSE
)
prune.neuron
depends on a more basic function
prune_vertices
and is also related to
subset.neuron
.
prune_strahler
, spine
,
prune_vertices
, subset.neuron
Other neuron:
neuron()
,
ngraph()
,
plot.dotprops()
,
potential_synapses()
,
resample()
,
rootpoints()
,
spine()
,
subset.neuron()
## prune single neurons
# \donttest{
plot3d(kcs20[[1]],col='blue')
plot3d(kcs20[[2]],col='red')
# }
# prune neuron 2 down to points that are close to neuron 1
neuron2_close=prune(kcs20[[2]], target=kcs20[[1]], maxdist=10)
# \donttest{
plot3d(neuron2_close, col='cyan', lwd=3)
# }
neuron2_far=prune(kcs20[[2]], target=kcs20[[1]], maxdist=10, keep='far')
# \donttest{
plot3d(neuron2_far, col='magenta', lwd=3)
# }
## Prune a neuron with a neuronlist
pruned=prune(kcs20[[11]], kcs20[setdiff(1:20, 11)], maxdist=8)
# \donttest{
plot3d(pruned, col='red', lwd=3)
plot3d(kcs20[[11]], col='green', lwd=3)
plot3d(kcs20,col='grey')
# }